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An analysts of the alpha-beta pruning algorithm is presented which takes into
account both shallow and deep cut-offs. A formula is first developed to measure the
average number of terminal nodes examined by the algorithm in a uniform tree of degree n
and depth d when ties are allowed among the bottom positions: specifically, all bottom
values are assumed to be independent identically distributed random variables drawn from
a discrete probability distribution. A worst case analysis over all possible probability
distributions is then presented by considering the limiting case when the discrete
probability distribution tends to a continuous probability distribution. The branching
factor of the alpha-beta pruning algorithm is shown to grow with n as ©(nAAn n), therefore
confirming a claim by Knuth and Moore that deep cut-offs only have a second order effect
on the behavior of the algorithm. -
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1 -~ Introduction

Most so-called intelligent programs use some form of tree searching; among them,
most game playing programs are built around an efficient tree searching algorithm known
as the alpha-beta pruning clgorithm. This paper investigates the efficiency of this
algorithm with respect to a cost measure first introduced by Knuth and Mcore in [3] and

given in the following.

Definition 1.1:
Let Nn,d be the number of terminal positions examined by some algorithm A in
searching a uniform tree of degree n and depth d. The quantity
Ran) = Gm (N, '/

is called the branching factor corresponding to the search algorithm A. | ]

Similar anaiyses have been attempted in two recent papers by Fuller, Gaschnig and
Gillogly [1] and by Knuth and Moore [3]. Both papers address the problem of searching a
uniform game tree of degree n and depth d with the «-8 pruning algorithm under the

d static values assigned to the terminal nodes are independent

assumptions that the n
identically distributed random variables and that they are all distinct. We immediately
observe that, in order to evaluate the branching factor, the last assumption requires that

the nd distinct values assigned to the terminal positions be taken from an infinite range.

For most practical applications this is, however, unrealistic.

Fuller, Gaschnig and Gillogly developed in [1] a general formula for the average
number of terminal positions examined by the -8 procedure. Their formula, however, is
computationally intractable and leads to undesirable rounding errors for large trees (i. e.,
for large n and d) since it involves, in particular, a 2d-2 nested summation of terms with
alternating signs and requires on the order of nd steps for its evaluation. Then they gave
some empirical results based on a series of simulations, and compared the results with
actual measurements obtained by running a modified version of the Technology Chess

Program [2].
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In [3], Knuth and Mcore have analyzed, under the same conditions, a simpler version
of the full «-8 pruning algorithm by not considering the possibility of deep cut-offs; they
have shown, in particular, that the branching factor of the resulting algorithm is @(n/An n).
Knuth and Moore also considered other assumptions to account for dependencies among the
static values assigned to the terminal positions and developed analytic results under those
assumptions. Their paper gives, in addition, an excellent presentation and historical

account of the «-4 pruning algorithm.

Departing from the assumptions of the two papers we just mentioned, we first
consider the effect of possible equalities between the values assigned to the terminal
nodes of a uniform tree, assuming that these values are independent identically distributed
random variables drawn from any discrete probability distribution. In Section 2, we
establish some notations and preliminary results, and in Section 3, we derive a general
fermula for the number of terminal nodes examined by the w-8 pruning algorithm when we
take into account both shallow and deep cut-offs. The evaluation of this formula requires
only a finite summaticn over the range of possible values assigned to the terminal nodes
and is relatively easy. We show, in particular, that, when the terminal nodes can only take
on two distinct values, the branching factor of the «-2 pruning algorithm can grow with n
as O(n/An n) for some choice of the probability distribution. In Section 4, we show that,
when the discrete probability distribution tends to a continuous probability distribution,
the summation derived in Section 3 can be replaced by an integral, which constitutes the
worst case over all discrete probability distributions. In Section 5, an analysis of this
integral shows that the branching factor of the -8 pruning algorithm for a uniform tree of
degree n grows with n as G(nAAn n), therefore confirming a claim by Knuth and Moore [3]
that deep cut-offs only have a second order effect on the average behavior of the
a-/3 pruning algorithm. Some concluding remarks and open problems are given in the last

section.




2 - Presentation and Initial properties of the «<~/4 pruning algorithm

There are two usual approaches for dealing with searching a game tree. In[1],
Fuller, Gaschnig and Gillogly adopted the Min-Max approach, while, in [3], Knuth and
Moore chose the Nega-Max appl:oach. We will briefly present, in Section 2.1, the two
approaches and introduce the «-f8 procedure in terms of the Nega-Max model. Then, in
Section 2.2, we will reestablish an initial result of [1] which was stated in terms of the

Min-Max approach.

2.1 - The «-/3 procedure

Let us consider a2 game (like chess, checkers, tic-tac-toe or kalah) played by two
players who take turns. It is common to represent the evolution of the game by means of
a game tree, where each position of the game is represented by a node. If the position is
a dead-end, the node is terminal, otherwise all possible moves from that position are
represented as the successors of the node. The structure of the tree is preserved by not
generating moves leading to some positions already generated (thus, avoiding cycles); this
is the function of the move generator. The evaluation function is another important
function in game playing programs; it assigns to each terminal position a static value by
estimating various parameters such as piece counts, occupation of the board, etc. The
evaluation function evaluates the terminal nodes from one player’s viewpoint, giving
higher values to positions more favorable to this player. It is convenient at this point to
name the two players Max and Min. Hence, Max's strategy is to lead the game towards
positions with higher values, while Min's strategy is to lead the game towards positions

with lower values.

The minimax procedure is directly based on this formulation and can be used by
either Max or Min to decide on his next move from a given position, assuming that his
opponent will respond with his best move. Using a rather brute force approach, the

minimax procedure assigns values to all nodes of a game tree. It first assigns to terminal
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nodes the results of the evaluation function, then it backs-up to internal nodes
corresponding to a pocition from which it is Max’s (Min's) turn to play the maximum

(mintmum) of the values assigned to ils successors.

Suppose it is Max's turn to play from an initial position (corresponding to the root
of the game tree), then it is his turn to play from any positions at even depth and Min's
turn to play from any positions at odd depth. Therefore, the minimax procedure will
back-up values to the nodes of the game tree through a succession of

Minimazing/Maximazing operations. This corresponds to the Min-Max epproach.

By observing thatl:
max{ min{ zj, 25, .. }, min{ v, ¥ - o s
max{ -max{ -z, %3, - }, -max{ -y, -y, ~ P e
the Min-Max approach can be directly reformulated into the Nega-Marx approach. In the
Nega-Max formulation, a terminal node of a game tree should be assigned the result of the
evaluation function only if it is at an even depth (assuming it is initially Max's turn to .

play) and it should be assigned the opposite of the result of the evatuation function tf it is |

at an odd depth. The Nega-Max approach requires the same operator at all levels of &
game tree, and the uniformily of the notation will make it easier to carry out an analysis.

This approach will be used throughout.

Figure 2.1 - Searching a game tree with the minimax procedure




Figure 2.1 shows the efiect of the minimax procedure in a uniform tree of degree 2
and depth 4. The values assigned to the terminal nodes have been chosen arbitrarily. The

path indicated by a darker line shows the sequence of moves selected by the procedure.

The minimax procedure is clearly a brute force search and, when exploring a node,
it uses none of the information already available from the nodes previously explored.
Obviously, by taking advantage of the information previously acquired we can easily
improve on the brute force search. Figure 2.2 presents some simple patterns in which the

distribution of the information could lead to such improvements.

(a) shallow cut-off

(b) deep cut-off

Figure 2.2 - Examples of possible cut-ofts

The circled nodes have already been explored, and they are labeled with their backed-up
values; the values of the other nodes are yet to be determined. We are interested in the

value v of the top level node in both patterns (a) and (b).

Let us consider the pattern of Figure 2.2 (a) first. From the definition of the
minimax procedure, the values v and z satisfy:
v = max{3,-z}, =z = max{-2,..},
which shows that z 2 -2 or 22 -z. Since 3222 -z, it follows that independent of the
exact value of z, we will have v = 3. This shows that we need not explore further the
successors of the node labeled x if we are only interested in the value of v. This leads to

a first type of cut-offs known as shallow cut-offs.




The pattern of Figure 2.2 (b) illustrates a deeper cut-off. As with the previous
example, there are immediate relations between the values of the nodes. In particular, we
have y 2 -z, which leads us to consider two cases. Either y > -z, and this means that the
value y is determined by its right son(s) and certainly does not depend on the right son(s)
of z. Or y = -z, in which case, since z 2 -y and z 2 -2, we deduce z 2 -2 or -z < 2; but
since v = max{3, -z} it follows that v = 3, independent of the exact value of z and, a
fortiort, independent of the exact value of z. This shows that in either case the successors
of the node labeled z need not be further explored since the final value of v would in no

way be affected.

The two examples presented in Figure 2.2 indicate that a reduction of the search
can be achieved if 2 node passes down to its sons the current value backed-up so far (3 in
the case of the two above examples) as a bound for pruning branches 2, 4, 6, .. levels
below; the bound can, of course, be improved as the search progresses down the tree

(leading to more and more possible cut-offs),

Using two bounds for even and odd levels of a tree, these improvements are

tmplemented in the following procedure adapted from [3].

integer procedure ALPHABETA(position P, integer alpha, integer beta):
begin integer 4 t, n;
determine the successor positions: PI' oy P
d n=0 then
ALPHABETA := fiP)

n

else
begin
for j:=1 step 1 until n do
begin
t := -ALPHABETA(P ,,-beta,-alpha);
if t>alpha then ‘alpha :=t;
if alpha 2 beta then goto dene (2.1)
end;
done: ALPHABETA := alpha
end
end

The alpha-beta procedure (from [3))
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The function denoted by f is the evaluation function which assigns static values to terminal

positions.
Knuth and Moore [3] have shown this procedure to be correct in the sense that the

call ALPHABETA(P,-c0,+) assigns to position P the value MINIMAX(P), which is the value

assigned by the minimax procedure. More generally, they showed [3, p. 297] that:
4 ALPHABETA(P,alpha,beta) < alpha, it MINIMAX(P) < alpha, (2.2) a

ALPHABETA(P,alpha,beta) = MINIMAX(P), if alpha < MINIMAX(P) < beta, (2.3)

ALPHABETA(P,alpha,beta) = beta, if MINIMAX(P) 2 beta. (2.4)

The same tree used in Figure 2.1 to illustrate the minimax procedure is shown in

Flgure 2.3 to illustrate the effects of the w-8 procedurs.

Figure 2.3 - Searching a game tree with the x-2 procedure

The branches pruned by the procedure are indicated with dashed lines, and the nodes
marked with a circle have not been completely explored. We observe that only 8 out of
the 16 terminal positions and 19 out of all the 31 nodes are examined by the «-8 pruning
algorithm in this example, reducing greatly the cost of searching the tree. As is seen by
comparing Fizures 2.1 and 2.3, the values backed-up by the «-£ procedure to some
internal nodes are not necessarily the same as the values backed-up by the minimax
procedure, as reflected by the indetermination in equations (2.2) and (2.4). The top value,

however, is not affected by this indetermination.




2.2 - Some properties of the «=/4 pruning algorithm

In this section, we will introduce some notations which will be used throughout, and
we will reestablish, in terms of the Nega-Max approach, an initial result of [1] giving a
necessary and sufficient condition for any node of a game tree to be examined by the

«-f pruning algorithm,

2.2.1 - Notations

As in [3], we will use the Dewey decimal notation to represent a node in a tree.
More precisely, let ¢, the empty sequence, denote the root of the game tree. Then, if 7
denotes some internal node of the tree with n sons, 2.j will denote the j-th son of node 7,
for j=1,..,n In Figure 2.4, node 4.1.3.4.3 is the node at depth 5 whose path from the

root is indicated with a darker line.

c(a) = 2
c(a.1) = -
c(4.1.3) = 3

c(4.1.3.4) = -5

c(4.1.3.4.3) = 0

w(4.1.3.4.3) = max{ c(4.1.3.4.3), c(4.1.3),c(4) } = 3

£(4.1.3.4.3) = ~max{ c(4.1.3.4),c(41) } = S
Figure 2.4 - Portion of a game tree showing the path to node <4.1.3.4.3>

The value associated with some node # of a game tree by the minimax procedure

(see Section 2.1) will be denoted by v(7). Then, if # is a terminal node, v(#) is the static

T




value asigned to that terminal position, and, if # is an internal node, v(}) is the value
backed-up to node # by the minimax procedure. In the latter case, if node # has n sons,
v(Z) is given by:

v(F) = max{-v(g.j))|1sjsn}. (2.5)
In Figure 2.4, the nodes on the path from the root to node 4.1.3.4.3 are evaluated through
formula (2.5) while the other nodes (including 4.1.3.4.3) are shown as terminal nodes and

are assigned arbitrary values. (Nodes are labeled with their values.)

While the values v(2) deal with the static aspect of a game iree, the quantities we
will introduce next deal mure with the dynamic aspect of the tree when being searched by

the o~/ procedure.

For any node 7.; at depth d > [, we define:
c(F.j) = max{-v(ge) | 1sis j-1}.
(By convention, the maximum over an empty set is defined to be -co; in particular,
c(3.1) = -.) For the root of the tree we also define c(e) = -. The guantity c(?) accounts
for the information provided to node # by its elder brothers. These velues are indicated
to the right of the game tree shown in Figure 2.4 for all nodes on the path to node

4.1.3.4.3; only the nodes indicated with squares are used in computing these values.

We finally define for any node # = Jy- -~ -Jq @t depth d 21 in a game tree two
quantities directly associated with node # by the «-8 procedure. For ¢ =0, ..., d-1, let
Ji. = Jq Jdts We define:

w(F) = max{c(F)|iiseven,0sisd-1},

B(F) = -max{c(F) |iisodd, 0<is<d-1}.
It ts convenient to define these two quantities for the root of the game tree by w(e) = -
and f(e) = +o (which is consistent with the definition). These «- and B-values are shown

in Figure 2.4 for the node 4.1.3.4.3 along with their definitions.
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2.2.2 - Necessary and sufficient condition for a node to be explored by the «-4 procedure

The following lemma justifies the notations we just introduced in the preceding

section.

Lemma 2.1:
Assume that, initially, the root of a game tree is explored by the -8 procedure
through the call
ALPHABETA(root,-w,+wm) . (2.6)
Then, if node # is examined, it is through a call of procedure ALPHABETA in which the
parameters alpha and beta satisfy:
alpha = «(F), (2.7)
beta = A(F). (2.8)
Proof:

It # = jj- .. .Jjg denotes some node explored by the procedure at depth d 2 I, let, as
before, 2, = Jjj- « -ig-» for 0 s ¢ sd-1. Thus node 7 is the father of node #, while, if
Jgq 2 2, node #4.(jg~1) is the brother of 7 immediately preceding # (and explored just
before 7). Observe that, it j; = 1, c(#p) = ¢(}) = - and therefore:

w(F) = max{c(F) |iiseven, 0sisd-!}
= - [ -max{c(F, ) |iisodd, 0si<d-2}]
= - B(F4)
(similarly, B(F) = -a(F;)). Observe also that, if jj 2 2:
w(F) = max{ a(Fy), c(3)}
= max{ «(#;), cldyGig-D], -viF;(ig-1)]}
and that 8(3) = B2 1.(jg-1)).

By the call of line (2.6), relations (2.7) and (2.8) certainly hold fer the root of the

game tree, since «(e) = - and f(e) = +0. Then the proo! follows by induction fram

inspection of the procedure ALPHABETA, and from the relations we derived above. &
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The following theorem states a useful relation that characterizes the fact that a
node of a tree is explored by the «-# pruning algorithm. This relation was first
established by Fuller, Gaschnig and Gillogly [1] with different notations in terms of the

Min-Max model.

Theorem 2.1:
Assume that, initially, the root of a game tree is explored by the «-8 procedure
through the call
ALPHABETA(root,-c,+) .

Then, an arbitrary node # of the game tree will be subsequently explored if and only

if
() < B(F). (2.9)

Praof:
Because of the presence of line (2.1) in procedure the ALPHABETA, the result
follows directly from the result of Lemma 2.1. |

Since it will be more convenient in the following sections, rather than «(7) and
B(F), we will use the quantities:
AlF) = max{clF)|iiseven, 0<is<d-1},
B(7) = max{c(?)|iisodd, 0si<d-1}.
where 7, is defined as before. The definitions of A(#) and B(7) are more symmetrical, and
relation (2.9) can also be rewritten in a more symmetrical way:

A(F) + B(F) < 0. (2.10)

3 - Number of nodes explored by the «-/ procedure: discrete case

As in [1] and [3], we will evaluate in this and the following section the amount of
work performed in searching a random uniform game tree using the a-8 pruning algorithm.
The definition and some properties of random uniform game trees are given in Section 3.1.
The amount of work performed by the «-8 procedure is measured by the number of

terminal nodes examined during the search and is evaluated in Section 3.2.

e
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3.1 = Random uniform game trees

In order to perform an analysis of the -8 pruning algorithm, we will Llimit

ourselves and consider the following class of game trees.

Dafinition 3.1:

A game tree in which
(a) all internal nodes have exactly n sons, and
(b) all terminal nodes (or bottom positions) are at depth d

is called a uniform game tree of degree n and depth d.

A uniform game tree which satisfies the additional condition
(c) the values assigned to all terminal nodes (or bottom vaiues) are independent
identically distributed random variables

is called a random uniform game tree, or, for short, a rug tree. [ |

Unless otherwise specified, we will only consider throughout a rug tree of degree n

and depth d.

Since the value backed-up to a node by the minimax procedure only depends on the
backed-up values of its sons, we immediately observe that, by condition (¢), the backed-up
values of all nodes at the same depth are also independent identically distributed random
variables. In the remainder of the section, we will assume that the bottom values are
drawn from the finite set { k/m | -m < k sm }, for some m > 0, and we will denote by
{p(k)}_cksm ©OF simply {p,(k)} the common probability distribution for the backed-up
values of all nodes at depth d -i (i.e., pik) is the probability that the value, v(3),
backed-up by the minimax pr~-~dure to some node 7 at depth d-i be k/m). In particular,
{pg(k)} ts the common probab.uty distribution for all bottom values, and {py(k)} is the

probability distribution for the value backed-up to the root of the rug tree.

The following lemma states the relations between these probability distributions.
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Lemma 3.1:
For ¢ = 0, ..., d-1, we have:
Pisg(-m) + v pi (k) = [p(-k) + ...+ pi(m)]*. (3.1)
Proot:
Let # be some internal node at depth d-i-1, then by equation (2.5), v(?) < k if and
only if -u(3.j) <k, for j=1,.,n Equation (3.1) follows easily from the fact that all

variables v(#./) are independent. |

Since the quantity pi(-k) + .. + pi(m) will occur again later on, we define for

i=0,1,..and -m < k < m:

pi(k) = pi(-k)+ ..+ p;(m) .
For convenience, we also define p,(-m-1) = 0. Note that p,(k) is a non-decreasing function
of k which satisfies p,(-m-1) =0 and p(m) = p(-m) + ..+ p,(m)=1. By rewriting
equation (3.1), we see that ?; satisfies: :

Piag(-k=1) = 1 - [p,;&)]* for i=0,1{, .., (3.2)
and, therefore:

Piaok) = 1= {1 - (o, for i=0,1, ... (3.3)

The following quantities will also be useful in Section 3.2. For i = 0, 1, . and
-m-1 < k < m, define:
pik) = 1+ (p (k)]s p )V, (3.4)
and
oik) = 1+ [pi(-k-1)]+ ..+ [p (k-1 (35)

Observe that p,(-m-1) = o, (m) =1 and pm) = o i(-m-1) = n.

Lemma 3.1 establishes the probability distributions for all the values in the nodes
of a rug tree. The next lemma establishes a similar result for the quantities c(7) defined

in Section 2.
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Lemma 3.2:

Let 7./ denote any node at depth i, where i =1, .., d. If j=1, c(}.j) = 0. If
J 2 2, then the probability distribution of ¢(g./), denoted by {9 (300} msksm Satisties:
TP ¢ Q3 = [p kYL (3.6)

Proof:
When j = 1, ¢(7.j) = -0 by definition. When j > 2, equation (3.6) follows from the

same argument given in the proof of Lemma 3.1. ]

In order to evaluate, through equation (2.10), the probability that a terminal node is
explored, we first need to determine the probability distributions for the two quantities

A(#) and B(#). This is done in the following.

Lemma 3.3:

Let 7 = id-g+ = -ij-Jg dencte any terminal node.
(1) If j; = 1 for all even integers i in the range 0 < i < d-1, then A(F) = -co.
(2) Otherwise, the probability distribution for A(}), denoted by {Qk(J)}—msksrn'
satisfies:
O gslP) & v ag@) = TE fomali (3.7)
where the product denoted by TTe is extended to all even integers in the range

0sisd-l.

Similarly,
(1) If j; = 1 for all odd integers i in the range ! < i < d-1, then B(}) = -co.
(2) Otherwise, the probability distribution for B(3), denoted by Ok(P ) mckems
satisfies:
b ¢ s by@) = TT, o), (3.8)
where the product denoted by TTO is extended to all odd integers in tI . range
1 <isd-1.

Proof:

We will only consider A(J) since the proof relative to B(2) is the sa! art (1)
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follows directly from the definition. For part (2), let 7; denote the node jy_j. ... .j;. We
note that A(7) < k U and only if c(?;) < k for all even integers i in the range 0 < i< d-1
such that j; 2 2. Since the variables c(};) are independent, equation (3.7) follows from
equation (3.6} by observing that, in the product ﬂe. a factor corresponding to j; = 1

amounts to I. [ |

The last lemma in this section states the probability of exploring a terminal node.

Lemma 3.4:
Let # = jy-. .. -ij-Jg denote any terminal node. The probability x(7) that node
# is examined by the -/ procedure is given by:
n(#) = 1 if j;=1for all even integers ¢ in the range 0 < i < d-J,
x(#) = 1 i j; =1 for all odd integers ¢ in the range I < i < d-1,
nF) = -msf';m-t ap(F) [b_ (@) + v b _((3)]  otherwise. (3.9)
Proof:
When j;, = 1 for all even integers i in the range 0 s i s d-, by Lemma 3.3 A(2) = -co.
Hence A(Z) + B(3) = - too, and by Theorem 2.1 node # is certainly explored. Similarly

when j; = 1 for all odd integers in the range { < < d-1.

Otherwise, both A(Z) and B(7' are finite. Let A(F) = k. We observe that
A(Z) + B(g) <0 if and only if -m < ks m-1 and -m < B(3) < -k-1. Hence, equation (3.9)

follows from Theorem 2.1 and the fact that A(3) and B(2?) are independent variables. | |

Using equations (3.7) and (3.8), equation (3.9) can be rewritten as:

(k-p)i!
LLCR N AR CHE D)

-1 ji-! ji1
" e F AT Lo 0V =TT, lpythk-00YE ) T, [y (k=01 (3.10)

(recall that ¢ (-m-1) = 0).
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3.2 = Number of terminal nodes examined by the o=/ pruning algorithm: discrete case

We are now able to evaluate the amount of work performed by the «-8 procedure
while searching a rug tree. As in [1] and [3], we have chosen to measure the amount of
work by the number of terminal nodes examined by the procedure. (We will also consider
briefly, at the end of the section, the total number of internal and terminal nodes explored

by the procedure as a measure of performance.)

Theorem 3.1:

The average number, Nn.,d(’")' of bottom positions examined by the
«-8 procedure in searching arug tree of degree n and depth d, for which the bottom
values are distributed according to the discrete proBabll'\ty distribution
{po,)} . ck<mp s 8iven by:
Ny g(m) = nld/2) e e 2tk =TT ptk-0) Ty o) , (3.11)
where the quantities pi(k) and o, (k) are defined by equations (3.4) and (3.5), and
where the products denoted by TT, and TT, are defined in Lemma 3.3.

Proof:

By definition of the probability x(3), the average number of bottom positions

examined by the «-f8 procedure is

Npam) = 2 n(3),
where the sum is extended to all terminal nodes & = Jig-g- = -ig-Jgp and is actually a
d-nested summation over the range ! < Josm Isjisn ., 15 id-g S n. The summation
can be rearranged as:

Npdm) = Zon@) « Zon@) « Z @) - nt. ...1),
where the three summations Ze, Zo and Z’ correspond to the three expressions for »(})
given in Lemma 3.4. The fourth term x(l....1) is subtracted from the sum since it is
counted by both 2, and Z . These two sums are easily evaluated since all the terms x(3)
are I. As x(l. .. .1) itself is {, we obtain:

Npa(m) = al@/2) o /2 - 4 5" wqg) . (3.12)
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It is to be noted that the first three terms correspond exactly to the number of terminal
nodes examined by the o-/f procedure under optimal ordering of the bottom values

(see [5, p. 201)).

We now evaluate the sum Z'. Inside the sum the terms »(#) can be evaluated

through equation (3.10). Wa note that all the summations relative to j;, for i = 0, /, ..., d-J,

can be done independently, each one being the ~ of a geometric sertes. Ué'mg the
quantities p (k) and (k) defined by equations (G ~btain:
2 o) e 2 e pk) -Tigp C - Ty ptm=1) + 1.

The theorem follows from this last equation and equciior (5.12), using the facts that

p(m) = n and that o;(m) = 1. |

The formula of eguation (3.11) can be easily evaluated and provides us with a
measure of performance for the «-8 pruning algorithm. For some applications, however
(especially when the cost of generating moves is greater than the cost of evaluating
positions), it is more convenient to use the total number of nodes (internal and terminal)
explored by the procedure as a measure of performance. Llet Tn,d(m) denote the average
o’ .nis number. The same way we evaluated Nn.,d(m)' we can evaluate Tn,d(’") by summing
the probabilities x(7) over all nodes of the tree. We obtatn:

Trdm) = NS glm) « N1 ym) + .o NS y(m),
where N’;I’d(m) ts the average number of nodes examined at depth i, and is directly
derived from the expression of Nn,d(”‘) in equation (2.11) by replacing d by ¢ and {py(k)}
by {py-;(k)} (recall that {py(k)} is the probability distribution for the values assigned to
the terminal nodes and that {p,_;(k)} is the probability distribution for the values

backed-up to nodes at depth i).

3.3 - Bi-valued rug trees

Although it is relatively easy in most game playing programs to obtain (by

inspection of the evaluation function) an accurate bound for the range of distinct values
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assigned to the various positions of the game, it is usually not so easy to derive a good
estimate for the probability distribution of these values. In the remainder of the section
we will study rug trees in which the terminal nodes can only take on two distinct values,
and we will see, in particular, that a change in the probability distribution of these values

can lead to very important differences in the growth rate of N, 4(m).

We will assume in the following that the values assigned to the terminal nodes of a
rug tree can only be either -1 or +! with respective proSabiLitles 1-p and p, for some
p € [0, 1]. Under these conditions, the number, Tn,d(p), of terminal nodes examined by the
«~/3 procedure can be obtained as a particular case of equation (3.11) in which m = I and

{pO(k)}-msksm is defined by po(‘l) = i'p, po(O) =0, po(l) = p.

Theorem 3.2:

Let pg = p, and, for i = 1, 2, ., let p; = £ - p[t.
Tpd® = a2 ald/2 o ne -0, (3.13)
with
Pe'”e;ﬁ;' B w Tl otk
where the products T1, and T1, are defined as before.
Proof:
Choose m ~ I and define the probability distribution {pg(k)}_ ckcm bY Po(-1) = I-p,
Pof0) = 0 and py(1) = p. Hence py(-2) =0, pp(-1) = py(0) = p = pg and py(1) = 1. By
equation (3.2) we obtain:
pi(-2) =0, pi(-1) = p(0) =p;, p(1) =1, for i =01, ..

Then equation (3.13) follows diractly from Theorem 3.1 and equations (3.4) and (3.5). @

Equation (3.13) can be evaluated very east[y and, in particular, we note that for
O<p< i

Tpd® > Tpg0) = Tpyt) = ald/214al4/2) -y (3.18)

This last equation shows that Tn,d(”) reaches its minimum al9/21 + pld/2} - 1 for p = 0 and

p=1. This is in agreement with the result of Slagle and Dixon [5, p. 201] since it




corresponds to the case when all terminal nodes are assigned the same value and
therefore all possible cut-offs do occur. Equation (3.14) also shows that T, ,(p) admits a
maximum for p € (0, 1); although the exact maximum cannot be readily obtained, we will

derive a lower bound in the following, We first establish a preliminary result.

Lemma 3.5:
The unique positive root, ¥, of the equation
2t + z - 1 = 0
is in the interval (0, 1). Asym-ptoti.calty (for large n) it satisfies:
1-%, ~ Ainn. (3.15)
Proof:

As there is no ambiguity, we will drop the index n from ¥, in the following.

Let g(x) ==xz"+xz-1, note that g(0)=-1<0 and g(1) =1>0. Since g(z) is
continuous and strictly increases for z pesitive, the equation g(x) = 0 admits a unique

positive root, ¥, which is in the interval (0, 1).

We observe that equation ¥ + ¥ - = 0 can be rewritten as

1
1-%5 = :
faftefe.spni)

from which we deduce that

fef s —d (3.16) 1

nel’
On the other hand, since " = [ - ¥, we obtain

n(¥-1) > nlnyg = In1-¥),

which shows, along with eguation (3.16), that

1-F < Lintarn) = Linn o+ 0fn72). (3.17)
Similarly, taking the logarithm of both sides of equation (3.17), and using the facts that
{-F=F"andthatinFs ! -f_,we obtain:

; < ._.__._I_—- "
1 + In(nAn n+!)
hence:

1-F > ,%ln(n/‘ln nsl) + O[(h’-ln n)?] = ;{-ln n o+ O(% tnlnnr).

Equation (3.15) follows directly from the previous equation and equation (3.17). ]
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When p = [, we obtain immediately that, for = 0, 1, .., p; = §,. Hence
Pg = [/(1-80)%2) and P, « (5, /(1-§ 0)14/2) .
From equations (3.13) and (3.15) it follows that, for large n:
Tpda) ~ [Ana)d, (3.18)
while equation (3.14) shows that
Tpd@ = Tpyt) ~ Ofal/21), (3.19)

Equations (3.18) and (3.19) indicate that T, 4(p) can be largely influenced by the
variations of the probability distribution for the static values. This result can be easily
generalized to Nn,d(rn). In the next section, we will derive an approximation to Nn'd(m)

which corresponds to its worst case behavior.

4 - Number of nodes explored by the «-/ procedure: continuous case

In this section, we derive an approximation to Nn,d(”‘) by considering the limit of
the finite series of equation (3.11) when m tends to infinity while the discrete probability
d'ts.tri.bution {po(")}-msksm tends to a continuous probability distribution. This
corresponds to the case studied by Fuller, Gaschnig and Gillogly [1] and by Knuth and
Moore [3] when the terminal nodes of a rug tree are all assigned distinct values. In

parttculér., we will reestablish (with a much simpler formula) a result of [1].

4.1 - Notations and preliminary results

We first introduce the sequence of functions {f;} mapping the interval [0, {] into
itself, and defined recursively by:
folz) = =z,
ffa) o - { «[F i@t for Lat, 2 ..
It is readily verified by induction on i that all functions f; are strictly increasing on [0, 1]
and satisty f,(0) = 0 and fi(1) = 1, . e., 0 and [ are two fixed points of the functions £ for

all n and i. The function £; will be shown to be related to the quantities p, (k) defined in

—

PP
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Section 3.1. Similarly, in relation to the quantities pj;(k) and o2.1(k) we define the

following functions on (0, 1]: for i = 1, 2, ..., let
1‘[.&_1(%)]’"

o« -
e L
fi(z)
(x) = —t——0pb.
=) [f‘-_I(z)]"'

If we define r (1) = n and 5;(0) = 1, we observe that all functions r; and s; are continuous
on [0, 1] (they are actually polynomials in z), and that r; is strictly increasing while s; is

strictly decreasing.

In relation to the two products ﬂe and TTO, we also introduce, for i = 1, 2, ..., the
following functions on [0, 1]:
R(z) = ry(x) x ... x r“/ﬂ(z) "
Six) = sy(x) x o x ’li./ZJ(”) ;
where Sl(x) = 1. Observe here, too, that functions R; and §; are polynomials, and that,

when z increases from 0 to !, Ri(x) increases from I to n.wz] while §;(x) decreases from

n.li/z] ta f.

Lastly, for k =0, 1, ..., 2m+{, let

Ck = Po(k'm‘f) .

Lemma 4.1:
Fori=1,2, ..and k = 0, .., 2m+{, we have:

ri@y) = py_otk-m-1), (4.1)

si(z)) = oy;_y(k-m-1) . (4.2)
Proof:

We first show that for i =0, 1, .. and k = 0, ..., 2m+1:

filey) = pi(k-m-1) . (4.3)
Since fy(z) = =, it follows from the definition of ¢) that equation (4.3) holds when i = 0.
Assume, for induction, that equation (4.3) holds for ¢ = A. Then by equation (2.3)

Popealk-m-1) = 1 - {1 - (e )T,

which shows that equation (4.3) also holds for ¢ = A+1 (from the definition of fh‘l)'
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Observe that ri(z)) = 1 + [f,_ (&)1 + .. + [f;_;(2,)]*", then equation (4.1) follows

from equations (4.3) and (3.4). Similarly, if we note that sL-(z) can be rewritten as

1 - {1 - [f; "

1= {1 - [f- 21 ‘

equation (4.2) follows from equations (3.2), (4.3) and (3.5). [ |

s,(z) =

4.2 - Number of bottom positions examined by the «=8 procedure: continuous case

Let us return to the definition of the sequence T, = {¢)}ockcom+y- AS Was
observed in Section 3.1 with the sequence {p;(k)}, the sequence T, is non-decreasing and
defines a partition of the interval [0, 1], t. e.:

0=2ps2; S8, ST,y =1.
The norm of the partition Tm is
IToll = max{ ey -z g | 1 sks2msl}=max{pgk) |-msksm 1

In the remainder of the section we require the following.

Assumption:

(A1) lim max{ pgtk) [-msksm} = 0. [ |
m-=o

This assumption ensures that the norm of the partition 7, tends to 0 when m tends
to infinity. It also shows that, as m tends to infinity, the probability of two terminal
nodes being assigned the same value vanishes. This corresponds to the case studied by

Fuller, Gaschnig and Gillogly {1], and by Knuth and Moore [3].

With this assumption, we will now see that the finite series of equation (3.11) can

be replaced by an integral when m-w. This is established in the following.

Theorem 4.1:

Under assumption (Al), we have:

lim N, y(m) = nl¥/2 . /o' Ry(E)Sy(t)dt , (4.8)

m-oo
where R (z) is the first derivative of Ry(z).
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Proof:

Since there is no risks of confusion, we will drop, in the following, the index d from

the functions Rd and Sd'

It follows directly from Lemma 4.1 that for k = 0, ..., 2m+1{:

| Rz)) = T1, pytk-m-1),

! Szy) =TT, oytk-m-1)

which shows that equation (3.11) can be simply rewritten as:
Npgm) = nld/2 o 2[Ry - Rley ) St .

Isk<2m+
Let A, denote the series defined in this last equation.

Recall that R(x) is a polynomial. By considering the Taylor development of R(z_;),

we obtain for k& = I, ..., 2m+1:
Rzy) - Rlgyp) = [ex2 () Ry) + L lep-ep P Ry,
where z,_, <t, <z). Hence:

Am = lshgmq ety 1] R'(z)) S(zy)

S P ———

2 Liz,- 2 R” : 45
+ 0 e 2[8;‘ Ck_l] R (tk) S(Zk) ( )
Since R and § are polynomials, the quantity |R"'(z)S(y)/2| is bounded by some constant,
say M, for any =z and y in [0, 1]. In particuliar, the second sum in equation (4.5) is bounded

in module by MT, Il.0zop. %] = MAIT, |l and therefore tends to 0 when m - o since,

from assumption (A1), |IT .l = 0.

As for the first sum in equation (4.5), we observe that it corresponds to a Riemann
sum for the function R'(x)S(z) over the partition T, of [0, 1]. Therefore since, in
particular, this function is continuous and since IT il tends to 0, the sum tends to the

f integral of equation (4.4). This proves the theorem. |

In the remainder of the section we will reinterpret the limit of Nn,d('") established

k in Theorem 4.1.

Let G be the distribution function of some continuous probability density function g,
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and assume, to simplify the discussion, that G(-1) = 0 and G(!) = { (therefore, G(z) = 0 for
z < -1 and G(z) = ! for z 2 1). We define a sequence of functions G, for m = 0, 1, ... as
follows. For -m < k < m, let 2, = k/m. Function G, is defined as the following step
function:

0 if ¢ Z, = 0,

Cplz) = Glzy) if zp<sz<czy,, for -msksm-1,

1 if laz,<z.
The seguence of functions {G,} constitutes a sequence of approximations to the
continuous function G. (It should be noted that the convergence of the sequence is
uniform on the interval [0, 1].) The function G, corresponds to the cumulative distribution

of the discrete probability distribution py(k) = C(zy*) - G (z4") associated with the

points zy = k/m, for k = -m, _., m.

Using the approximation {po(k)}_msksm to the density function g, equation (3.11)
provides us with an approximation to the average number of bottom positions examined by
the «-f procedure in a rug tree in which the bottom values are drawn from the continuous
probability density function g. When m becomes larger, the approximation becomes
better, and (due to the uniform convergence of the sequence G, ) it can actually be shown
(in a rather technical way) that the limit of Nn,d(”‘) when m < « corresponds exactly to
the average number of bottom positions examined by the «-8 procedure in the continuous
case. As a matter of fact, equation (4.4) could vbe derived directly by considering a
continuous probability distribution rather than a discrete one in very much the same way

we derived equation (3.11) in Section 3. This result is stated in the following.

Theorem 4.2:
Let fo(x) =z, and, for ( = {, 2, ..., define:
[‘(x) = ] - {1 - [f‘_}(z)]"'}"' ’
1-[]}_',(:)]“
l-f‘-_l(z)

[f¢-1(3)]n :

f'"(Z) -

S"(Z) =
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Ri(x) = ry(z) x .. x rh/ﬂ(z) .

Si(z) = sq(x)x .. x "lé/ZJ(z) ;
The average number, Nn,d' of terminal nodes examined by the «-8 pruning algorithm in
a rug tree of degree n and -depth d for which the bottom values are drawn from a
continuous distribution is given by:

Nag = 083 s f LRS00 (4.6)

It is to be rioted that, unlike the case of a discrete probability distribution, when
the bottom values are drawn from a continuous distribution, the number of terminal

positions examined by the w-72 procedure does not depend on the distribution function.

4.3 - Discrete case versus continuous case

Since equation (4.6) has been derived as the limit of equation (3.11), it is reasonable
to investigate the validity of the approximation of Nn,d(”‘) by Nn,d' As was seen (n
Section 3.3, Nn'd(m) strongly depends on the probability distribution {pgtk)}_ . ck<m @nd,
therefore, we cannot expect Nn,d to be a close approximation of Nn,d‘(m) in all cases. We
will see below, however, that Np,d provides us with a good insight into the behavior of
the «-f pruning algorithm. Namely, we will see that it constitutes the worst case of

N, 4(m) over all discrete probability distributicons.

Since N, 4 was obtained as the limit of N, 4(m), it is sufficient to show that, for all
probability distributions {py(k)}_,,  f<m» We have:

N,‘L,d > Nn,d(”‘) : (4.7)

In order to prove inequality (4.7), it is convenient to give a geometric interpretation of

both N,, 4 and N,, 4(m).

Consider the curve (L) defined by ths Carlesian coordinates (x, y) through the
parametric equations

(L): [ xz = Rd(t) ’y Y= Sd(t) ] ’

_d
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where the parameter t varies in the interval [0, f]. The integral of equation (4.6)
represents the area delimited by the curve (L), the x-axis and the parallels to the y-axis
at the abscissas Ry0) ~1 and Ry(!) = nl?/2] (spe Figure 4.1). Since Ry(0) = ! and
S4(0) = nld/2j’ the term nl®/2] of equation (4.6) can be accounted for by the area of the
rectangle delimited by the z-axis, the y-axis and the lines z = { and y = nld/2) (the latter
line extends the curve (£) in a continuous way). Figure 4.1 represents the curve (£) and
its extension in the case n = 3, d = 6. The area below the unbroken lines represents the

quantity Nn,d'

Sd(l)

27

24

21

18

15

12

—

The

-

Rd(t)

Figure 4.1 - Geometric interpretation of Nn,d and Nn,d("‘)

sum of equation (3.11) can also be represented along with the curve (£). It
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follows directly from the relations of equations (4.1) and (4.2) that the terms of the sum
represent the areas of the rectangles delimited by the lines z = Ry gy x = Rz ), y = 0
and y = R(z)), for k =1, 2, .., 2m~1. The quantity N, 4(m) represents therefore the area

of Figure 4.1 shown below the broken lines.

Inequality (4.7), then, follows directly from the fact that, when t increases in [0, 1],

R(t) increases while S(t) decreases.

S - On the branching factor of the «-/ pruning algorithm

Ws have deliberately chosento introduce first the case when the bottom valuss of a
game tree are drawn from a discrete probability distribution since it is of most interest in
actual applications. The case of a continuous distribution, however, lends itself to an
easiter analysis, and, since it constitutes the worst case over all discrete probability
distributions, we will, in this section, examine the integral of equation (4.6) rather than

the series of equation (3.11).

5.1 = Previous results

In Section 1, we introduced the branching factor as a cost measure for the work
tnvolved in searching a tree. Rather than considering the number, Nn,d' of terminal
positions examined by a search algorithm, as a measure of performance of the algorithm,
we could have considered the total number, Tn,d' of nodes (terminal and internal) explored
during the search. In the case of the «-f pruning algorithm, since Nn,d' given by
equation (4.6), does not depend on the distribution function of the bottom values, we
deduce that Tn,d saltisfies:

Tn,d = 1+ Nn,] * ik Nn,d :
Since it can be checked easily that 0 < Nn"-_, < Nn,i' we obtain Nn,d < Tn,d < dNn.,d' anc!
therefore:

: 1/d .\ d
Gm (Ta /4 G N P o Ry gln).
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Thus Definition 1.1 provides us with a measure of performance useful to compare search
algorithms. In the following, we review some of the results which have already been

presented in the literature.

Minimax search

The minimax search examines systematically all nodes of a tree. It, therefore,
examines Nn,d = n9 terminal nodes in a uniform tree of degree n and depth d, leading to a
branching factor

R

minimaz(®) = n.

o=/ procadure under optimal ordering
Slagle and Dixon [5, p. 201] have shown that, when all possible «- and B-cut-offs
occur, the w-8 procedure examines
Npd = ald/2) , ald/2) - 4
terminal positions. In this case, the corresponding branching factor is

Ropt("') = nlle.

«=/3 procedure (experimental results from (1]}

Based on a series of simulation results, Fuller, Gaschnig and Gillogly [1] have

argued that the formula

Npg = cld)n072d + 0277
constitutes a reasonable approximation to the number of bottom positions examined by the
«-B procedure for small values of n and d, and that ! < c(d) s 2 (at least for the range of
values they considered). For comparison purposes, let us assume that their approximation
can be extrapolated for any n and d. Provided that e(d)!/d 4 | when d » o, we obtain

Ry.pn) ~ n072.
In view of the results of Section 3.3, we can question the accuracy of the approximation

for large n since it follows from Theorem 3.2 that

tjm (Tha® )4 = 0N ).

SI—
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=3 procedure without deep cut-offs

Knuth and Moore [3] have analyzed a simpler version of the «-4 procedure by not
considering the possibilities of deep cut-offs. This [-procedure is the same as the
- procedure except that no «o-values are passed to the «-f3 procedure; instead, the
lower value « is always set to -o before exploring the successors of a node. Knuth and
Moore have shown that the branching factor of this procedure satisfies

R'g(n) = BlnAn n).
Note that, since the S-procedure always explores more nodes at any depth in a tree than
the full «-f8 procedure does in the same tree, Rﬁ(n) provides us with an upper bound for

Rc_/_;(n).

5.2 - Bounds on the branching factor of the «=/4 procedure

In this section we will derive some lower and upper bounds on the branching factor
of the «-43 pruning algorithm. In particular, since the lower bound we derive grows with n
as n/An n, we will be able to conclude, using the result on the branching factor of the
-3 procedure without deep cut-offs established by Knuth and Moore in [3], that the

branching factor of the «-8 procedure is @(nAn n).

We introduced in Section 4.1 the sequence of functions fpi=01,., from [0, 1] to
itself, and we observed that all functions f; share the two fixed points 0 and {
(independent of n). Another common fixed point, which depends on n, was introduced in

Section 3.3.

Lemma 5.1:
For a given n, all functions f for i =0, 1, .. share the common fixed point
£, € (0, 1), the unique positive root of the equation
2" + z - [ = 0.
Proot:

For clarity, we will drop the index n from Ya in the following.

s g e
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Since fy(x) = 2z, ¥ is certainly a fixed point of fa; assume, for induction, that
fi-1(3) = ¥, then from the definition of f; we have
Fi8) = - -[fi @I - 1 - & 1§},

which shows that ¥ is a fixed point common to all functions £}, i = 0, ¢, ... [ ]

Since §, is a fixed point common to all functions fpéi=0,1,..,itis easy to evaluate
at this point the functions r; and s; defined in Section 4.1. For i = {, 2, .., we deduce that:
rifSp) = s(Xp) = FM1-8,). (5.1)

In particular, it follows from Lemma 3.5 that, for large n:
riEp) = s(§,) ~ nfinn. (5.2)
Equations (5.1) and (5.2) will be useful to obtain the desired bounds in the remainder of

the section.

The geometric representation of equation (4.6), given in Figure 4.1, makes it easy to

derive bounds on the quantity N, ;. They are stated in the following.

Theorem 5.1:
The branching factor of the w-8 pruning algorithm in the search of a rug tree of
degree n satisfies:
afinn ~ ¥ /(1-F) < Ry p(n) < YaE /1-5,) ~ n/Ana, (5.3)
for n = 2, 3, ...
Proot:
Since, when t increases in [0, 1], Rd(t) increases while §(t) decreases, it follows
directly that for any « in [0, 1] we have the following inequalities:
Ry(@).S 4(e) < Nn,d < Ry(@).§4(0) + [Ry(1) - R y(@)].S 4le) . (5.4)
If we choose « = ¥, we have R (w) = [§n/(1-§n)]fd/2] and Sy(w) = [g’n/(l-fn)]ld/zj. Since
Ry(1) = n[d/Z] and § 40) = nld/?j_ tnequality (5.3) follows immediately from inequality (5.4)

and the results of Lemma 3.5. |

As an (mmediate consequence, we obtain the following.
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Theorem 5.2:
The branching factor of the w-B pruning algorithm in the search of a rug tree of
degree n satisfies, for large n:
Ra-ﬁ(") = O(nAnn).
Proot:
The result comes directly from the lower bound §,/(1-¥,) ~ n/An n of Theorem 5.1,
and from the upper bound Rﬂ(n) obtained for the «-8 procedure without deep cut-offs,

which Knuth and Moore have shown to be O(n/in n). | |

This results confirms, as was suggested by Knuth and Moore [3, p. 310], that deep
cut-offs have only a second order effect on the behavior of the w-8 pruning algorithm. On
the other hand, it shows that the formula proposed by Fuller, Gaschnig and Gillogly in [1]
and mentioned in Section 5.1, if it constitutes a reasonable approximation for small values
of n and d (the range of values they considered is n + d < 12), is certainly not adequate for

large values.

We note that the bounds of Theorem 5.1 were obtained without difficulty by
conveniently choosing just one point, ¥,, on the curve (L) since it was easy to evaluate
both Rd(gn) and Sd(g‘n). In the next section, using a different approach, we will derive a

tighter upper bound for N, 4, and hence for R:z-ﬂ(")'

5.3 = Improved upper bound

Since, for d = 1, 2, . Ny g € Ny gug S nN, g, then, it (N, )!/9 tends to some limit
when d tends to infinity as an even integer, this quantity tends to the same limit when d
tends to infinity as an odd integer. Therefore, without loss of generality, we will only

consider, in this section, the case when d is an even integer. Let d = 2A.

For z in [0, 1] and for i = 1, 2, ..., we define p,(x) = r,(z)s;(x).
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Lemma 5.2:

AUl functions p;, for i =1, 2, .., have the same absolute maximum, M,, in the
interval [0, 1].
Proof:
From the definitions of ry(z) and s5,(z) we have for i = 1, 2, ...
ri(z) = rilfi- g1,
and
si(x) = sy[f_((2)].
Therefore, for i = 1, 2, .., we also have, from the definition of pi(z):
pi(z) = pylfi j(2)].
The lemma follows by observing that, for i = 1, 2, ..., Ly is a one-to-one function from

[0, 1] to itself. | |

Lemma 5.2 shows that, in order to study the maximum of p,(z), when z € [0, [], it is

suffictent to study the maximum of the polynomial

-t f o - L
p(z) = 11 _’; L “zn.z) , for z €0, 1].

Observe that M, 2 p,(¥,) = [fn/(f-fn)lz, in particular, since it can be checked easily
that, for n = 2, 3, .., ¥, > YR/(1+¥n), it follows that

M, >n for n=23,... (5.5)

n

Theorem 5.3
The branching factor of the a-4 pruning algorithm for a rug tree of degree n
satisfies:
Ry-pn) s Mg, (5.6)
where M, is defined in Lemma 5.2.
Proof:
From the definition of th(t), we obtain for h = 2, 3, ...
Rop(t) = Rop_o(thrp(t) ¢ Rop_o(thryft).
By multiplication by §,,(¢) it follows that
Rop(t).Sop(t) = Rop o(t).Sop o(t)pp(t) + Rop o(t).Sop_o(t)rp(t)sp(t) .
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Since, for t € [0, 1], all factors in this equation are non-negative, we deduce, using the
results of Lemma 5.2 and the fact that :h(t) s n when ¢t € [0, 1), that:

Rop(t)Sop(t) s MpRopo®)Sop o) + n M P 1 ric).
Stince, in addition,

R5(t) Sy(t) = ry(t) sy(t) s nriylt),
it follows that for t € [0, 1] and h = 1, 2, ...:

Rop(t) Soptt) s n M AL (i) o v rp)]. (5.7)
Let In,d be the integral defined in equation (4.6). By integrating inequality (5.7) over
[0, 1] we see that In,d satisfies:

Inoh s nM P (h=1)] = n(r-1) A M1
since r,(0) = { and ri(1) = nfor i = 1, 2, ... This shows that

Nooh s af s na-) R M Aot

Equation (5.6) now follows directly from inequality (5.5). - |

5.4 - Numerical results

Table 5.1 summarizes the results of this section. It presents the various lower and
upper bounds we have derived for the branching factor of the «-8 pruning algorithm from
equations (5.3) and (5.6). Although we have not been able to give an estimate for the
asymptotic growth of JM_":, we can easily derive an upper bound for this quantity by
studying rug trees of depth 2 since:

Mp s Npo < 208, /(0-8,) - (£ /(-8 )F ~ 20%/na,
which shows that /M_,.; < O(n/YIn n). The numerical results of Table 5.1 indicate that /n;
is a much better upper bound for Ru_ﬂ(n) than Vrf /(1-E,) for the range of values we

have considered.
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lower bound upper bounds

n EnlllnEp) \/ﬂ; Jng‘n/(l-fn) from [3)
2 1618 1622 1.799 1.884
3 2.148 2.168 2.538 2.666
4 2.630 2.678 3.243 3.397
5 3.080 3.166 3.924 4.095
6 3.506 3.638 4.587 4.7267
7 3.915 4.098 5.235 5.421
8 4.309 4.549 5.872 6.059
9 4.692 4.993 6.498 6.684
10 5.064 5.430 7.116 7.298
11 5.427 5.862 7.726 7.902
12 5.782 6.290 8.330 8.498
13 6.130 6.713 8.927 9.086
14 6.473 7.133 9.519 9.668
5 6.809 7.549 10.107 10.243
16 7.141 7.963 10.689 10.813
17 7.468 8.373 11.268 11.378
18 7.791 8.782 11.842 11.938
19 8.110 9.188 12.413 12,494
20 8.425 9.591 12.980 13.045
21 8.736 9.993 13,545 13,593
22 9.045 10.393 14.106 14.137
23 9.350 10.791 14.665 14678
24 9.653 11.188 15.221 15.215
25 9.952 11.583 15.774 15.748
26 10.250 11.976 16.325 16.265
27 10.545 12.369 16.873 16.778
28 10.838 12.759 17.420 17.288
29 11.128 13.149 17.964 17.796
30 11416 13.537 18.507 18.300
31 11.703 13.924 19.047 18.802
32 11.987 14310 19.586

Table 5.1 - Bounds on the branching factor of the -8 pruning algorithm

6 - Conclusions and open problems

We have presented an analysis of the performance of the a-f pruning algorithm for
searching a uniform tree of degree n and depth d when the values assigned to the terminal
nodes are independent identically distributed random variables. The analysis takes into
account both shallow and deep cut-offs and we have also considered the effect of

equalities between the values assigned to the terminal nodes.

A simple formula was derived, in Section 3, to measure the number of terminal
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nodes examined by the «-8 procedure when the bottom values are drawn from a finite
range according to an arbitrary discrete probability distribution. Although the formula can
be easily computed numerically, a direct analysis is made difficult by the presence of the
probability distribution. When only two distinct values can be assigned to the terminal
nodes, it is shown that the number of terminal nodes examined by the «-48 procedure can
be at least O[(n/An n)d], and, in light of the results of Section 5, this corresponds to the

worst case behavior of the algorithm (over all discrete probability distributions).

A formula was then presanted in the form of an integral to measure the number of
terminal nodes explored by the a-4 procedure when the bottom values are all distinct. An
analysis of the integral shows that the branching factor of the w-8 pruning algorithm is
G(nAn n), a result which confirms a claim by Knuth and Moore [3] that deep cut-offs only

have a second order effect on the behavior of the w-43 pruning algorithm.

Although the assumption used in Sections 4 and 5 when the bottom values are all
distinct is not realistic for most practical applications, the results we have derived from it
give us some insight into the worst case behavior of the «-8 pruning algorithm when
equalities between bottom values are possible, and they are a useful complement to the
formula of Section 3. Similarly, the branching factor analyzed in Section 5 provides us
only with an asymptotic measure of performance for the «-8 pruning algorithm (i. e., for
trees of large depth). As indicated by the results of Section 3.3, however, the branching

factor can also be used as a realistic measure of the worst case even for small trees.

We have measured the efficiency of the «-8 pruning algorithm by the average
number of terminal nodes explored by the algorithm, it would be interesting to also obtain

an estimate for the standard deviation of this number.

The scheme we have considered for assigning values to terminal nodes of a uniform
tree lent itself easily to analysis, it is, however, very simplistic. Different schemes for

assigning static values have been proposed in [1], [3) and [4). Analyses of these schemes
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would be helpful for various applications; a step in this direction was presented in [4] for

game trees of depth 2 and 3.
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